Publications Takanori MARUTA/ 発表論文 丸田隆典

Publications Takanori MARUTA.  See also Google Scholar or ORCiD

[Original Articles, Reviews and Book Chapters/ 原著論文、総説および著書]
  Equal contribution; * Corresponding author

  1. Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T and Maruta T* (Original Article)
    Distribution and functions of monodehydroascorbate reductases in plants: Comprehensive reverse genetic analysis of Arabidopsis thaliana enzymes.
    Antioxidants, 10: 1726, 2021 Oct. DOI: https://doi.org/10.3390/antiox10111726

    田中 澪氏、高橋隆樹氏および濱田あかね氏の修士論文研究
    解説記事
    – – –
  2. Sodeyama T, Nishikawa H, Harai K, Takeshima D, Sawa Y, Maruta T and Ishikawa T* (Original Article)
    The D-mannose/L-galactose pathway is the dominant ascorbate biosynthetic route in the moss Physicomitrium patens
    The Plant Journal, 107: 1724-1738, 2021 Sep. DOI: https://doi.org/10.1111/tpj.15413
    解説記事
    – – –
  3. Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, Yamamoto H, Ishikawa T and Maruta T* (Original Article)
    Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photooxidative stress.
    The Plant Journal, 107: 876-892, 2021 Aug. DOI: https://doi.org/10.1111/tpj.15352
    →亀岡峰志氏および岡安嵩也氏の修士論文研究
    解説記事
    – – –
  4. 丸田隆典*(総説)
    ビタミンC代謝と植物の環境ストレス順応
    ビタミン.2021年9月.95: 405-412.DOI: 
    – – –
  5. Fernandez AI, Vangheluwe N, Xu K, Jourquin J, Claus LAN, Morales-Herrera S, Parizot B, De Gernier H, Yu Q, Drozdzecki A, Maruta T, Hoogewijs K, Vannecke W, Peterson B, Opdenacker D, Madder A, Nimchuk ZL, Russinova E and Beeckman T* (Original Article)
    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. 
    Nature Plants, 6: 533-543, 2020 May. DOI: https://doi.org/10.1038/s41477-020-0645-z
    – – –
  6. Terai Y, Ueno H, Ogawa T, Sawa Y, Miyagi A, Kawai-Yamada M, Ishikawa T and Maruta T* (Original Article)
    Dehydroascorbate reductases and glutathione set a threshold for high-light-induced ascorbate accumulation.
    Plant Physiology, 183: 112-122, 2020 May. DOI: https://doi.org/10.1104/pp.19.01556
    →寺井佑介氏の修士論文研究/上野祐美氏の卒業研究
    Plant Physiology誌のNews and Viewsで取り上げられました

    解説記事
    – – –
  7. Tamaki S, Nishino K, Ogawa, T, Maruta T, Sawa Y, Arakawa K and Ishikawa T* (Original Article)
    Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. 
    PLoS One, 14: e0227226, 2019 Dec. DOI: https://doi.org/10.1371/journal.pone.0227226
    解説記事
    – – –
  8. Shiroma S, Tanaka M, Sasaki T, Ogawa T, Yoshimura K, Sawa Y, Maruta T* and Ishikawa T (Original Article)
    Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. 
    Plant Science, 284: 185-191, 2019 Jul. DOI: https://doi.org/10.1016/j.plantsci.2019.04.012
    →城間咲希氏の修士論文研究/佐々木智寛氏の卒業研究
    解説記事

    – – –
  9. Tomiyama T, Goto K, Tanaka Y, Maruta T, Ogawa T, Sawa Y, Ito T and Ishikawa T* (Original Article)
    A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. 
    PLoS One, 14:e0210755, 2019 Jan. DOI: https://doi.org/10.1371/journal.pone.0210755
    解説記事

    – – –
  10. Maruta T* and Ishikawa T (Book chapter)
    Ascorbate peroxidase functions in higher plants: The control of the balance between oxidative damage and signaling. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp41-59, 2018 Mar. DOI: https://doi.org/10.1007/978-3-319-75088-0_3
    – – –
  11. Ishikawa T*, Maruta T, Yoshimura K and Smirnoff N  (Book chapter)
    Biosynthesis and regulation of ascorbic acid in plants. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp163-179, 2018 Mar. DOI: https://doi.org/10.1007/978-3-319-75088-0_8
    – – –
  12. Maruta T and Ishikawa T* (Book chapter)
    Ascorbate peroxidases: Crucial roles of antioxidant enzymes in plant stress responses. 
    In: Hossain MA, Munné- Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A, Editors. Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing, pp111-127, 2018 Mar. DOI: https://doi.org/10.1007/978-3-319-74057-7_4
    – – –
  13. Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y and Ishikawa T* (Original Article)
    Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. 
    Scientific Reports, 7: 13504, 2017 Oct. DOI: https://doi.org/10.1038/s41598-017-14077-6
    解説
    – – –
  14. Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K and Ishikawa T* (Original Article)
    Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. 
    FEBS Letters, 591: 1360-1370, 2017 May. DOI: https://doi.org/10.1002/1873-3468.12659
    解説
    – – –
  15. Ishikawa T*, Tamaki S, Maruta T and Shigeoka S (Book chapter)
    Biochemistry and physiology of reactive oxygen species in Euglena. 
    In: Schwartzbach SD and Shigeoka S, Editors. Euglena: Biochemistry Cell and Molecular Biology. Springer International Publishing, pp47-64, 2017 Apr. DOI: https://doi.org/10.1007/978-3-319-54910-1_4
    – – –
  16. Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K and Shigeoka S* (Original Article)
    Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. 
    Scientific Reports, 6: 37432, 2016 Nov. DOI: https://doi.org/10.1038/srep37432
    解説

    – – –
  17. Noshi M, Mori D, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22. 
    Plant Science., 252: 12-21, 2016 Nov. DOI: https://doi.org/10.1016/j.plantsci.2016.06.019
    – – –
  18. Ishikawa T*, Maruta T, Ogawa T, Yoshimura K and Shigeoka S (Book chapter)
    Redox balance in chloroplasts as a modulator of environmental stress responses: the role of ascorbate peroxidase and nudix hydrolase in Arabidopsis. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer International Publishing, pp51-70, 2016 Sep. DOI: https://doi.org/10.1007/978-3-319-44081-1_3
    – – –
  19. Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Mini review)
    Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? 
    Plant & Cell Physiology, 57: 1377-1386, 2016 Jul. DOI: https://doi.org/10.1093/pcp/pcv203
    解説

    – – –
  20. Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T and Shigeoka S* (Original Article)
    Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 80: 870-877, 2016 May. DOI: https://doi.org/10.1080/09168451.2015.1135042
    – – –
  21. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T* and Arakawa K (Original Article)
    De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. 
    BMC Genomics, 17: 182, 2016 Mar. DOI: https://doi.org/10.1186/s12864-016-2540-6
    解説

    – – –
  22. Tanaka H, Maruta T, Ogawa T, Tanabe N, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    Identification and characterization of Arabidopsis AtNUDX9 as a GDP-D-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium. 
    Journal of Experimental Botany, 66: 5797-5808, 2015 Sep. DOI: https://doi.org/10.1093/jxb/erv281
    – – –
  23. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis
    Plant Science, 236: 29-36, 2015 Jul. DOI: https://doi.org/10.1016/j.plantsci.2015.03.016
    – – –
  24. Ogawa T, Tamoi M*, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T and Shigeoka S (Original Article)
    Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. 
    Biotechnology for Biofuels, 8: 80, 2015 May. DOI: https://doi.org/10.1186/s13068-015-0264-5
    解説

    – – –
  25. Maruta T, Miyazaki N, Nosaka R, Tanaka H, Padilla-Chacon D, Otori K, Kimura A, Tanabe N, Yoshimura K, Tamoi M and Shigeoka S* (Original Article)
    A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling. 
    New Phytologist, 206: 1013-1023, 2015 May. DOI: https://doi.org/10.1111/nph.13309
    – – –
  26. Tanaka H, Maruta T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1. 
    Plant Science, 231: 20-29, 2015 Feb. DOI: https://doi.org/10.1016/j.plantsci.2014.11.007
    – – –
  27. Shigeoka S* and Maruta T (Review)
    Cellular redox regulation, signaling, and stress response in plants. 
    Bioscience, Biotechnology, and Biochemistry, 78: 1457-1470, 2014 Sep. DOI: https://doi.org/10.1080/09168451.2014.942254
    – – –
  28. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis
    Bioscience, Biotechnology, and Biochemistry, 78: 593-601, 2014 Apr. DOI: https://doi.org/10.1080/09168451.2014.890037
    – – –
  29. Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis
    Plant Science, 219-220: 61-68, 2014 Apr. DOI: https://doi.org/10.1016/j.plantsci.2014.01.003
    – – –
  30. Yoshimura K*, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T and Shigeoka S (Original Article)
    Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 78: 60-66, 2014 Jan. DOI: https://doi.org/10.1080/09168451.2014.877831
    – – –
  31. 丸田隆典*(総説)
    アスコルビン酸代謝を介した活性酸素種の生理活性調節
    ビタミン.2014年1月.88: 1-10.DOI: https://doi.org/10.20632/vso.88.1_1
    – – –
  32. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T and Shigeoka S* (Original Article)
    Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. 
    Transgenic Research, 22: 391-402, 2013 Apr. DOI: https://doi.org/10.1007/s11248-012-9656-5
    – – –
  33. Maruta T, Ojiri M, Noshi M, Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Activation of γ-aminobutyrate production by chloroplastic H2O2 is associated with the oxidative stress response. 
    Bioscience, Biotechnology, and Biochemistry, 77: 422-425, 2013 Feb. DOI: https://doi.org/10.1271/bbb.120825
    – – –
  34. 吉村和也*、伊藤大輔、丸田隆典、重岡 成 (総説)
    Nudix hydrolaseファミリーによるビタミン補酵素型の代謝制御
    ビタミン.2013年1月.87: 1-12.DOI: https://doi.org/10.20632/vso.87.1_1
    – – –
  35. Ito D, Kato T, Maruta T, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26. 
    Bioscience, Biotechnology, and Biochemistry, 76: 2236-2241, 2012 Dec. DOI: https://doi.org/10.1271/bbb.120523
    – – –
  36. Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. 
    Biochimica et Biophysica Acta – General Subjects, 1820: 1901-1907, 2012 Dec. DOI: https://doi.org/10.1016/j.bbagen.2012.08.003
    – – –
  37. Mori T, Yoshimura K, Nosaka R, Sakuyama H, Koike Y, Tanabe N, Maruta T, Tamoi M and Shigeoka S* (Original Article)
    Subcellular and subnuclear distribution of high-light responsive serine/arginine-rich proteins, atSR45a and atSR30, in Arabidopsis thaliana
    Bioscience, Biotechnology, and Biochemistry, 76: 2075-2081, 2012 Nov. DOI: https://doi.org/10.1271/bbb.120425
    – – –
  38. Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M and Shigeoka S* (Original Article)
    The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. 
    Plant & Cell Physiology, 53: 1596-1606, 2012 Sep. DOI: https://doi.org/10.1093/pcp/pcs100
    – – –
  39. Noshi M, Maruta T and Shigeoka S* (Addendum)
    Relationship between chloroplastic H2O2 and the salicylic acid response. 
    Plant Signaling & Behavior, 7: 944-946, 2012 Aug. DOI: https://doi.org/10.4161/psb.20906
    – – –
  40. Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. 
    Plant & Cell Physiology, 53: 1106-1116, 2012 Jun. DOI: https://doi.org/10.1093/pcp/pcs054
    – – –
  41. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. 
    Journal of Biological Chemistry, 287: 11717-11729, 2012 Apr. DOI: https://doi.org/10.1074/jbc.M111.292847
    – – –
  42. Ito D, Yoshimura K, Ishikawa K, Ogawa T, Maruta T and Shigeoka S* (Original Article)
    A comparative analysis of the molecular characteristics of the Arabidopsis CoA pyrophosphohydrolases, AtNUDX11, 15, and 15a. 
    Bioscience, Biotechnology, and Biochemistry, 76: 139-147, 2012 Jan. DOI: https://doi.org/10.1271/bbb.110636
    – – –
  43. Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. 
    Journal of Experimental Botany, 63: 229-239, 2012 Jan. DOI: https://doi.org/10.1093/jxb/err275

    – – –
  44. Yabuta Y, Osada R, Morishita T, Nishizawa-Yokoi A, Tamoi M, Maruta T and Shigeoka S* (Original Article)
    Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. 
    Plant Science, 181: 421-427, 2011 Oct. DOI: https://doi.org/10.1016/j.plantsci.2011.07.001
    – – –
  45. Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T and Shigeoka S* (Original Article)
    Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. 
    Plant & Cell Physiology, 52: 1786-1805, 2011 Oct. DOI: https://doi.org/10.1093/pcp/pcr115
    – – –
  46. Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Page M, Smirnoff N and Ishikawa T* (Original Article)
    Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis in Arabidopsis thaliana.
    Bioscience, Biotechnology, and Biochemistry, 75: 1783-1788, 2011 Sep. DOI: https://doi.org/10.1271/bbb.110320
    – – –
  47. Gao Y, Nishikawa H, Badejo AA, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N and Ishikawa T* (Original Article)
    Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana
    Journal of Experimental Botany, 62: 3647-3657, 2011 Jun. DOI: https://doi.org/10.1093/jxb/err068
    – – –
  48. Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y and Shigeoka S* (Original Article)
    HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for Hsf signaling network in response to environmental stress. 
    Plant & Cell Physiology, 52: 933-945, 2011 May. DOI: https://doi.org/10.1093/pcp/pcr045
    – – –
  49. Tamoi M, Hiramatsu Y, Nedachi S, Otori K, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels. 
    Photosynthesis Research, 108: 15-23, 2011 May. DOI: https://doi.org/10.1007/s11120-011-9645-1
    – – –
  50. Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. 
    Plant Science, 180: 655–660, 2011 Apr. DOI: https://doi.org/10.1016/j.plantsci.2011.01.014
    – – –
  51. Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A and Shigeoka S* (Original Article)
    Generation of transplastomic lettuce with enhanced growth and high yield. 
    GM Crops, 1: 322-326, 2010 Nov-Dec. DOI: https://doi.org/10.4161/gmcr.1.5.14706
    – – –
  52. Maruta T, Otori K, Tabuchi T, Tanabe N, Tamoi M and Shigeoka S* (Addendum)
    New insights into the regulation of greening and carbon-nitrogen balance by sugar metabolism through a plastidic invertase. 
    Plant Signaling & Behavior, 5: 1131-1133, 2010 Sep. DOI: https://doi.org/10.4161/psb.5.9.12568
    – – –
  53. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T and Shigeoka S* (Original Article)
    The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. 
    Bioscience, Biotechnology, and Biochemistry, 74: 1494-1497, 2010 Jul. DOI: https://doi.org/10.1271/bbb.100157
    – – –
  54. Yabuta Y, Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A and Shigeoka S* (Addendum)
    Identification of recognition sequence of ANAC078 protein by the cyclic amplification and selection of targets technique. 
    Plant Signaling & Behavior, 6: 695-697, 2010 Jun. DOI: https://doi.org/10.4161/psb.5.6.11577
    – – –
  55. Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings. 
    Journal of Biological Chemistry, 285: 15399-15407, 2010 May. DOI: https://doi.org/10.1074/jbc.M109.055111
    – – –
  56. Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual Role in photoprotection and gene regulation under photooxidative stress. 
    Plant & Cell Physiology, 51:190-200, 2010 Feb. DOI: https://doi.org/10.1093/pcp/pcp177
    – – –
  57. Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y and Shigeoka S* (Original Article)
    Arabidopsis NAC transcription factor, ANAC078, regulates flavonoids biosynthesis under high-light. 
    Plant & Cell Physiology, 50: 2210-2222, 2009 Dec. DOI: https://doi.org/10.1093/pcp/pcp159
    – – –
  58. Ishikawa T*, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T and Shigeoka S (Original Article)
    The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.
    Journal of Biological Chemistry, 283: 31133-31141, 2008 Nov. DOI: https://doi.org/10.1074/jbc.M803930200
    – – –
  59. Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura, Ishikawa T and Shigeoka S* (Original Article)
    Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 72: 2598-2607, 2008 Oct. DOI: https://doi.org/10.1271/bbb.80284
    – – –
  60. Maruta T, Yonemitsu M, Yabuta Y,Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. 
    Journal of Biological Chemistry, 283: 28842-28851, 2008 Oct. DOI: https://doi.org/10.1074/jbc.M805538200
    – – –
  61. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis
    Journal of Experimental Botany, 58: 2661-2671, 2007 Jun. DOI: https://doi.org/10.1093/jxb/erm124
    – – –
  62. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K and Shigeoka S* (Original Article)
    Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. 
    Plant Journal, 48: 535-547, 2006 Nov. DOI: https://doi.org/10.1111/j.1365-313X.2006.02889.x
    – – –
  63. Yabuta Y, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. 
    Plant & Cell Physiology, 45: 1586-1594, 2004 Nov. DOI: https://doi.org/10.1093/pcp/pch181

 

[Others/ その他の解説記事など]

  1. 丸田隆典(トピックス)
    ビタミンCの異化(2.9.9)
    ビタミン・バイオファクター総合辞典(朝倉書店,日本ビタミン学会編集). 2021年7月.pp271-274(ISBN978-4-254-10292-5)
    – – –
  2. 田中泰裕,丸田隆典,石川孝博(トピックス)
    緑藻クラミドモナスのTET1 ホモログCMD1 は新規アスコルビン酸依存型ジオキシゲナーゼである
    ビタミン.2020年12月.94:589-592.DOI: 
    – – –
  3. 菊樂香奈,丸田隆典(トピックス)
    細胞質型アスコルビン酸ペルオキシダーゼは4-クマル酸3-ヒドロキシラーゼとしてリグニン合成に関与する
    ビタミン.2020年8月.94:450-452.DOI: https://doi.org/10.20632/vso.94.8_450
    – – –
  4. 亀岡峰志,吉村和也,石川孝博,丸田隆典(トピックス)
    アスコルビン酸分解産物から糖へのオキサリル基の転移:植物におけるアスコルビン酸の新たな役割?
    ビタミン.2019年8月.93:337-339.DOI: https://doi.org/10.20632/vso.93.8_337
    – – –
  5. 三冨 弦、寺井佑介、吉村和也、石川孝博、丸田隆典(トピックス)
    葉緑体から核への直接的なH2O2シグナル輸送 〜逆行性シグナルとアスコルビン酸ペルオキシダーゼ〜
    ビタミン.2018年3月.92:143-145.DOI: https://doi.org/10.20632/vso.92.3_143
    – – –
  6. 寺井佑介、三冨 弦、吉村和也、石川孝博、丸田隆典(トピックス)
    デヒドロアスコルビン酸還元酵素の新たな役割 〜酸化型グルタチオンを介した細胞死誘導への寄与〜

    ビタミン.2017年11月.91:660-662.DOI: https://doi.org/10.20632/vso.91.11_660
    – – –
  7. 寺井佑介、吉村和也、石川孝博、丸田隆典(トピックス)
    植物におけるトリニトロトルエン毒性 〜モノデヒドロアスコルビン酸還元酵素の関与〜
    ビタミン.2017年6月.91:366-368.DOI: https://doi.org/10.20632/vso.91.5.6_366
    – – –
  8. 竹内 崇、丸田隆典、石川孝博(トピックス)
    植物のアスコルビン酸輸送体がついに同定された ―PHT4;4 による葉緑体へのアスコルビン酸輸送
    ビタミン.2015年6月.89:286-288.DOI: https://doi.org/10.20632/vso.89.5-6_286
    – – –
  9. 種子田隼人、丸田隆典、石川孝博(トピックス)
    COP9シグナロソームは光によるアスコルビン酸生合成制御のネガティブレギュレーターとして機能する
    ビタミン.2014年6月.88:289-291.DOI: https://doi.org/10.20632/vso.88.5-6_289

    – – –
  10. Ahmed Gaber、尾形知哉、丸田隆典、吉村和也、田茂井政宏、重岡 成(研究論文紹介)
    シロイヌナズナグルタチオンペルオキシダーゼ8の核および細胞質での酸化障害の抑制への関与
    ビタミン.2013年6月.87:271-273.DOI: https://doi.org/10.20632/vso.87.5-6_271
    – – –
  11. 丸田隆典、重岡 成(トピックス)
    活性酸素種の持つ細胞毒性作用とシグナルとしての機能 -アスコルビン酸ペルオキシダーゼによるレドックス制御-
    ビタミン.2011年1月.85:5-7.DOI: https://doi.org/10.20632/vso.85.1_31