Publications Takanori MARUTA.  See also Google ScholarORCiD, or researchmap

[Original Articles, Reviews and Book Chapters/ 原著論文、総説および著書]
 Equal contribution; * Corresponding author

  1. Maruta T*, Tanaka Y, Yamamoto K, Ishida T, Hamada A and Ishikawa T (Review)
    Evolutionary insights into strategy shifts for the safe and effective accumulation of ascorbate in plants. 
    Journal of Experimental Botany, in press, 2024. DOI: https://doi.org/10.1093/jxb/erae062
    →植物の進化過程で起こったビタミンCの高濃度化について、それを可能にした分子機構の変遷について新たな説を提案しました。鍵を握るのは、生合成の光調節機構の獲得とビタミンC再生系の強化です!
  2. Hamada T and Maruta T* (Book Chapter) 
    Measurements of ascorbate and dehydroascorbate in plants using high-performance liquid chromatography.
    In: Corpas, F.J., Palma, J.M. (eds) ROS Signaling in Plants. Methods in Molecular Biology, vol 2798, pp131-139, 2024 Apr. Humana, New York. DOI: https://doi.org/10.1007/978-1-0716-3826-2_8
  3. Ishida T, Tanaka Y, Maruta T, Ishikawa T* (Original Article)
    The D-mannose/L-galactose pathway plays a predominant role in ascorbate biosynthesis in the liverwort Marchantia polymorpha but is not regulated by light and oxidative stress.
    The Plant Journal, 117: 805-817, 2024 Feb. DOI: https://doi.org/10.1111/tpj.16530
  4. Hamada A, Ishikawa T and Maruta T* (Original Article)
    The demand for ascorbate recycling capacity rises as the ascorbate pool size increases in Arabidopsis plants
    Bioscience, Biotechnology, and Biochemistry, 87: 1332-1335, 2023 Nov. DOI: https://doi.org/10.1093/bbb/zbad107
    →濱田あかね氏の修士論文研究
    →ビタミンC再生能力の需要はビタミンCのプールサイズによって決定されることを遺伝学的に証明しました。つまり、ビタミンC再生活性は、葉のビタミンC量が高いときほど重要で、逆に低いときには少なくて良いことがわかりました(解説記事)。
  5. Willems P, Van Ruyskensvelde V, Maruta T, Pottie R, Fernández-Fernández ÁD, Pauwels J, Hannah MA, Gevaert K, Van Breusegem F*, Van der Kelen K (Original Article)
    Mutation of Arabidopsis SME1 and Sm core assembly improves oxidative stress resilience
    Free Radical Biology and Medicine, 200: 117-129, 2023 May. DOI: https://doi.org/10.1016/j.freeradbiomed.2023.02.025
    →カタラーゼ欠損株の細胞死を抑圧するサプレッサー変異株を単離し、その原因遺伝子としてスプライシング制御因子SME1を同定しました。また、複合的なオミックス解析により、SME1によるスプライシング制御機構の詳細を明らかにしました(解説記事)。
  6. Hamada A, Tanaka Y, Ishikawa T and Maruta T* (Original Article)
    Chloroplast dehydroascorbate reductase and glutathione cooperatively determine the capacity for ascorbate accumulation under photooxidative stress conditions
    The Plant Journal, 114: 68-82, 2023 Apr. DOI: https://doi.org/10.1111/tpj.16117
    →濱田あかね氏の修士論文研究
    葉緑体におけるグルタチオン依存的なビタミンC再生系が光酸化的ストレス下でのビタミンCの高蓄積と細胞の保護に不可欠であることを遺伝学的に証明しました。また、葉のビタミンCプールサイズの決定における再生活性とストレス強度の関係を明らかにすることができました(解説記事)。
  7. Hossain MF, Dutta AK, Suzuki T, Higashiyama T, Miyamoto C, Ishiguro S, Maruta T, Muto Y, Nishimura K, Ishida H, Aboulela M, Hachiya T and Nakagawa T* (Original Article)
    Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, affects cytokinesis of guard mother cells and exine formation of pollen in Arabidopsis thaliana
    Planta, 257: 64, 2023 Apr. DOI: https://doi.org/10.1007/s00425-023-04097-0
    →中川強先生との共同研究
  8. Tanaka Y, Goto K, Jun L, Nishino K, Ogawa T, Maruta T and Ishikawa T* (Original Article)
    Identification of glucanases and phosphorylases involved in hypoxic paramylon degradation in Euglena gracilis
    Algal Research, 67: 102829, 2022 Sep. DOI: https://doi.org/10.1016/j.algal.2022.102829
  9. Maruta T* (Award Review)
  10. How does light facilitate vitamin C biosynthesis in leaves?
    Bioscience, Biotechnology, and Biochemistry, 86: 1173-1182, 2022 Aug. DOI: https://doi.org/10.1093/bbb/zbac096
    農芸化学奨励賞受賞のAward Review
    →葉におけるビタミンCの生合成がどのように制御されるのかについて議論した総説です。ビタミンC生合成は光によって活性化されますが、その仕組みは十分に理解されていません。特に、ビタミンCが多いときは生合成がフィードバック阻害を受けるので、この仕組みを解除しなければビタミンCを増やすことができません。この重大な問いに対して最新の研究をもとに深く考察しました(解説記事)。
  11. Maruta T* and Ishikawa T (Book Chapter)
    Analysis of Ascorbate Metabolism in Arabidopsis Under High-Light Stress. 
    In: Mhamdi A (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526, pp15-24, 2022 Jun. Humana, New York. DOI: 10.1007/978-1-0716-2469-2_2
  12. Iwagami T, Ogawa T, Ishikawa T and Maruta T* (Original Article)
    Activation of ascorbate metabolism by nitrogen starvation and its physiological impacts in Arabidopsis thaliana.
    Bioscience, Biotechnology, and Biochemistry, 86: 476-489, 2022 Apr. DOI: doi.org/10.1093/bbb/zbac010
    →岩上拓己氏の修士論文研究
    →窒素欠乏条件でアスコルビン酸代謝系が活性化されることを見出しました。興味深いことに、ビタミンC欠乏変異株は強光ストレス下で明確な細胞死を示しますが、事前の窒素欠乏処理により細胞死が緩和されることがわかりました(解説記事)。
  13. Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T and Maruta T* (Original Article)
    Distribution and functions of monodehydroascorbate reductases in plants: Comprehensive reverse genetic analysis of Arabidopsis thaliana enzymes.
    Antioxidants, 10: 1726, 2021 Oct. DOI: doi.org/10.3390/antiox10111726

    →田中 澪氏、高橋隆樹氏および濱田あかね氏の修士論文研究
    →緑藻および陸上植物におけるモノデヒロアスコルビン酸還元酵素(MDAR)を分類し、アイソフォームの進化や植物種における分布を明確化しました。また、シロイヌナズナの欠損株を用いた解析から、MDARは他のビタミンC再生系と冗長的に機能することがわかりました(解説記事)。
  14. 丸田隆典*(総説)
    ビタミンC代謝と植物の環境ストレス順応
    ビタミン,95:405-412,2021年9月.DOI: https://doi.org/10.20632/vso.95.9_405
  15. Sodeyama T, Nishikawa H, Harai K, Takeshima D, Sawa Y, Maruta T and Ishikawa T* (Original Article)
    The D-mannose/L-galactose pathway is the dominant ascorbate biosynthetic route in the moss Physicomitrium patens
    The Plant Journal, 107: 1724-1738, 2021 Sep. DOI: doi.org/10.1111/tpj.15413
    解説記事
  16. Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, Yamamoto H, Ishikawa T and Maruta T* (Original Article)
    Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photooxidative stress.
    The Plant Journal, 107: 876-892, 2021 Aug. DOI: doi.org/10.1111/tpj.15352
    →亀岡峰志氏および岡安嵩也氏の修士論文研究
    →光酸化的ストレス防御における葉緑体型アスコルビン酸ペルオキシダーゼの役割と位置付けを遺伝学的に明らかにしました(
    解説記事)。
  17. Fernandez AI, Vangheluwe N, Xu K, Jourquin J, Claus LAN, Morales-Herrera S, Parizot B, De Gernier H, Yu Q, Drozdzecki A, Maruta T, Hoogewijs K, Vannecke W, Peterson B, Opdenacker D, Madder A, Nimchuk ZL, Russinova E and Beeckman T* (Original Article)
    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. 

    Nature Plants, 6: 533-543, 2020 May. DOI: doi.org/10.1038/s41477-020-0645-z
  18. Terai Y, Ueno H, Ogawa T, Sawa Y, Miyagi A, Kawai-Yamada M, Ishikawa T and Maruta T* (Original Article)
    Dehydroascorbate reductases and glutathione set a threshold for high-light-induced ascorbate accumulation.
    Plant Physiology, 183: 112-122, 2020 May. DOI: doi.org/10.1104/pp.19.01556
    →寺井佑介氏の修士論文研究/上野祐美氏の卒業研究
    Plant Physiology誌のNews and Viewsで取り上げられました
    ビタミンC再生酵素・デヒドロアスコルビン酸還元酵素のはたらきが、グルタチオンによって相補されることを初めて明らかにしました。また、ビタミンC再生能力はビタミンCの高蓄積に不可欠であることを遺伝学的に示しました(解説記事)。
  19. Tamaki S, Nishino K, Ogawa, T, Maruta T, Sawa Y, Arakawa K and Ishikawa T* (Original Article)
    Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. 
    PLoS One, 14: e0227226, 2019 Dec. DOI: doi.org/10.1371/journal.pone.0227226
    解説記事
  20. Shiroma S, Tanaka M, Sasaki T, Ogawa T, Yoshimura K, Sawa Y, Maruta T* and Ishikawa T (Original Article)
    Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. 
    Plant Science, 284: 185-191, 2019 Jul. DOI: doi.org/10.1016/j.plantsci.2019.04.012
    →城間咲希氏の修士論文研究/佐々木智寛氏の卒業研究
    解説記事
  21. Tomiyama T, Goto K, Tanaka Y, Maruta T, Ogawa T, Sawa Y, Ito T and Ishikawa T* (Original Article)
    A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. 
    PLoS One, 14:e0210755, 2019 Jan. DOI: doi.org/10.1371/journal.pone.0210755
    解説記事
  22. Maruta T* and Ishikawa T (Book chapter)
    Ascorbate peroxidase functions in higher plants: The control of the balance between oxidative damage and signaling. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp41-59, 2018 Mar. DOI: doi.org/10.1007/978-3-319-75088-0_3
  23. Ishikawa T*, Maruta T, Yoshimura K and Smirnoff N  (Book chapter)
    Biosynthesis and regulation of ascorbic acid in plants. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp163-179, 2018 Mar. DOI: doi.org/10.1007/978-3-319-75088-0_8
  24. Maruta T and Ishikawa T* (Book chapter)
    Ascorbate peroxidases: Crucial roles of antioxidant enzymes in plant stress responses. 
    In: Hossain MA, Munné- Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A, Editors. Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing, pp111-127, 2018 Mar. DOI: doi.org/10.1007/978-3-319-74057-7_4
  25. Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y and Ishikawa T* (Original Article)
    Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. 
    Scientific Reports, 7: 13504, 2017 Oct. DOI: doi.org/10.1038/s41598-017-14077-6
    解説記事
  26. Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K and Ishikawa T* (Original Article)
    Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. 
    FEBS Letters, 591: 1360-1370, 2017 May. DOI: doi.org/10.1002/1873-3468.12659
    解説記事
  27. Ishikawa T*, Tamaki S, Maruta T and Shigeoka S (Book chapter)
    Biochemistry and physiology of reactive oxygen species in Euglena. 
    In: Schwartzbach SD and Shigeoka S, Editors. Euglena: Biochemistry Cell and Molecular Biology. Springer International Publishing, pp47-64, 2017 Apr. DOI: doi.org/10.1007/978-3-319-54910-1_4
  28. Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K and Shigeoka S* (Original Article)
    Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. 
    Scientific Reports, 6: 37432, 2016 Nov. DOI: doi.org/10.1038/srep37432
    解説記事
  29. Noshi M, Mori D, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22. 
    Plant Science, 252: 12-21, 2016 Nov. DOI: doi.org/10.1016/j.plantsci.2016.06.019
  30. Ishikawa T*, Maruta T, Ogawa T, Yoshimura K and Shigeoka S (Book chapter)
    Redox balance in chloroplasts as a modulator of environmental stress responses: the role of ascorbate peroxidase and nudix hydrolase in Arabidopsis. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer International Publishing, pp51-70, 2016 Sep. DOI: doi.org/10.1007/978-3-319-44081-1_3
  31. Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Mini review)
    Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? 
    Plant & Cell Physiology, 57: 1377-1386, 2016 Jul. DOI: doi.org/10.1093/pcp/pcv203
    解説記事
  32. Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T and Shigeoka S* (Original Article)
    Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 80: 870-877, 2016 May. DOI: doi.org/10.1080/09168451.2015.1135042
  33. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T* and Arakawa K (Original Article)
    De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. 
    BMC Genomics, 17: 182, 2016 Mar. DOI: doi.org/10.1186/s12864-016-2540-6
    解説記事
  34. Tanaka H, Maruta T, Ogawa T, Tanabe N, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    Identification and characterization of Arabidopsis AtNUDX9 as a GDP-D-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium. 
    Journal of Experimental Botany, 66: 5797-5808, 2015 Sep. DOI: doi.org/10.1093/jxb/erv281
  35. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis
    Plant Science, 236: 29-36, 2015 Jul. DOI: doi.org/10.1016/j.plantsci.2015.03.016
  36. Ogawa T, Tamoi M*, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T and Shigeoka S (Original Article)
    Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. 
    Biotechnology for Biofuels, 8: 80, 2015 May. DOI: doi.org/10.1186/s13068-015-0264-5
    解説記事
  37. Maruta T, Miyazaki N, Nosaka R, Tanaka H, Padilla-Chacon D, Otori K, Kimura A, Tanabe N, Yoshimura K, Tamoi M and Shigeoka S* (Original Article)
    A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling. 
    New Phytologist, 206: 1013-1023, 2015 May. DOI: doi.org/10.1111/nph.13309
  38. Tanaka H, Maruta T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1. 
    Plant Science, 231: 20-29, 2015 Feb. DOI: doi.org/10.1016/j.plantsci.2014.11.007
  39. Shigeoka S* and Maruta T (Review)
    Cellular redox regulation, signaling, and stress response in plants. 
    Bioscience, Biotechnology, and Biochemistry, 78: 1457-1470, 2014 Sep. DOI: doi.org/10.1080/09168451.2014.942254
  40. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis
    Bioscience, Biotechnology, and Biochemistry, 78: 593-601, 2014 Apr. DOI: doi.org/10.1080/09168451.2014.890037
  41. Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis
    Plant Science, 219-220: 61-68, 2014 Apr. DOI: doi.org/10.1016/j.plantsci.2014.01.003
  42. Yoshimura K*, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T and Shigeoka S (Original Article)
    Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 78: 60-66, 2014 Jan. DOI: doi.org/10.1080/09168451.2014.877831
  43. 丸田隆典*(総説)
    アスコルビン酸代謝を介した活性酸素種の生理活性調節
    ビタミン,88:1-10,2014年1月.DOI: doi.org/10.20632/vso.88.1_1
  44. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T and Shigeoka S* (Original Article)
    Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. 
    Transgenic Research, 22: 391-402, 2013 Apr. DOI: doi.org/10.1007/s11248-012-9656-5
  45. Maruta T, Ojiri M, Noshi M, Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Activation of γ-aminobutyrate production by chloroplastic H2O2 is associated with the oxidative stress response. 
    Bioscience, Biotechnology, and Biochemistry, 77: 422-425, 2013 Feb. DOI: doi.org/10.1271/bbb.120825
  46. 吉村和也*,伊藤大輔,丸田隆典,重岡 成 (総説)
    Nudix hydrolaseファミリーによるビタミン補酵素型の代謝制御
    ビタミン,87: 1-12,2013年1月.DOI: doi.org/10.20632/vso.87.1_
  47. Ito D, Kato T, Maruta T, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26. 
    Bioscience, Biotechnology, and Biochemistry, 76: 2236-2241, 2012 Dec. DOI: doi.org/10.1271/bbb.120523
  48. Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. 
    Biochimica et Biophysica Acta - General Subjects, 1820: 1901-1907, 2012 Dec. DOI: doi.org/10.1016/j.bbagen.2012.08.003
  49. Mori T, Yoshimura K, Nosaka R, Sakuyama H, Koike Y, Tanabe N, Maruta T, Tamoi M and Shigeoka S* (Original Article)
    Subcellular and subnuclear distribution of high-light responsive serine/arginine-rich proteins, atSR45a and atSR30, in Arabidopsis thaliana
    Bioscience, Biotechnology, and Biochemistry, 76: 2075-2081, 2012 Nov. DOI: doi.org/10.1271/bbb.120425
  50. Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M and Shigeoka S* (Original Article)
    The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. 
    Plant & Cell Physiology, 53: 1596-1606, 2012 Sep. DOI: doi.org/10.1093/pcp/pcs100
  51. Noshi M, Maruta T and Shigeoka S* (Addendum)
    Relationship between chloroplastic H2O2 and the salicylic acid response. 
    Plant Signaling & Behavior, 7: 944-946, 2012 Aug. DOI: doi.org/10.4161/psb.20906
  52. Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K and Shigeoka S* (Original Article)
    An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. 
    Plant & Cell Physiology, 53: 1106-1116, 2012 Jun. DOI: doi.org/10.1093/pcp/pcs054
  53. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. 
    Journal of Biological Chemistry, 287: 11717-11729, 2012 Apr. DOI: doi.org/10.1074/jbc.M111.292847
  54. Ito D, Yoshimura K, Ishikawa K, Ogawa T, Maruta T and Shigeoka S* (Original Article)
    A comparative analysis of the molecular characteristics of the Arabidopsis CoA pyrophosphohydrolases, AtNUDX11, 15, and 15a. 
    Bioscience, Biotechnology, and Biochemistry, 76: 139-147, 2012 Jan. DOI: doi.org/10.1271/bbb.110636
  55. Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S and Ishikawa T* (Original Article)
    Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. 
    Journal of Experimental Botany, 63: 229-239, 2012 Jan. DOI: doi.org/10.1093/jxb/err275
  56. Yabuta Y, Osada R, Morishita T, Nishizawa-Yokoi A, Tamoi M, Maruta T and Shigeoka S* (Original Article)
    Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. 
    Plant Science, 181: 421-427, 2011 Oct. DOI: doi.org/10.1016/j.plantsci.2011.07.001
  57. Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T and Shigeoka S* (Original Article)
    Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. 
    Plant & Cell Physiology, 52: 1786-1805, 2011 Oct. DOI: doi.org/10.1093/pcp/pcr115
  58. Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Page M, Smirnoff N and Ishikawa T* (Original Article)
    Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis in Arabidopsis thaliana.
    Bioscience, Biotechnology, and Biochemistry, 75: 1783-1788, 2011 Sep. DOI: doi.org/10.1271/bbb.110320
  59. Gao Y, Nishikawa H, Badejo AA, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N and Ishikawa T* (Original Article)
    Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana
    Journal of Experimental Botany, 62: 3647-3657, 2011 Jun. DOI: doi.org/10.1093/jxb/err068
  60. Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y and Shigeoka S* (Original Article)
    HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for Hsf signaling network in response to environmental stress. 
    Plant & Cell Physiology, 52: 933-945, 2011 May. DOI: doi.org/10.1093/pcp/pcr045
  61. Tamoi M, Hiramatsu Y, Nedachi S, Otori K, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels. 
    Photosynthesis Research, 108: 15-23, 2011 May. DOI: doi.org/10.1007/s11120-011-9645-1
  62. Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. 
    Plant Science, 180: 655–660, 2011 Apr. DOI: doi.org/10.1016/j.plantsci.2011.01.014
  63. Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A and Shigeoka S* (Original Article)
    Generation of transplastomic lettuce with enhanced growth and high yield. 
    GM Crops, 1: 322-326, 2010 Nov-Dec. DOI: doi.org/10.4161/gmcr.1.5.14706
  64. Maruta T, Otori K, Tabuchi T, Tanabe N, Tamoi M and Shigeoka S* (Addendum)
    New insights into the regulation of greening and carbon-nitrogen balance by sugar metabolism through a plastidic invertase. 
    Plant Signaling & Behavior, 5: 1131-1133, 2010 Sep. DOI: doi.org/10.4161/psb.5.9.12568
  65. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T and Shigeoka S* (Original Article)
    The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. 
    Bioscience, Biotechnology, and Biochemistry, 74: 1494-1497, 2010 Jul. DOI: doi.org/10.1271/bbb.100157
  66. Yabuta Y, Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A and Shigeoka S* (Addendum)
    Identification of recognition sequence of ANAC078 protein by the cyclic amplification and selection of targets technique. 
    Plant Signaling & Behavior, 6: 695-697, 2010 Jun. DOI: doi.org/10.4161/psb.5.6.11577
  67. Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T and Shigeoka S* (Original Article)
    Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings. 
    Journal of Biological Chemistry, 285: 15399-15407, 2010 May. DOI: doi.org/10.1074/jbc.M109.055111
  68. Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual Role in photoprotection and gene regulation under photooxidative stress. 
    Plant & Cell Physiology, 51:190-200, 2010 Feb. DOI: doi.org/10.1093/pcp/pcp177
  69. Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y and Shigeoka S* (Original Article)
    Arabidopsis NAC transcription factor, ANAC078, regulates flavonoids biosynthesis under high-light. 
    Plant & Cell Physiology, 50: 2210-2222, 2009 Dec. DOI: doi.org/10.1093/pcp/pcp159
  70. Ishikawa T*, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T and Shigeoka S (Original Article)
    The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.
    Journal of Biological Chemistry, 283: 31133-31141, 2008 Nov. DOI: doi.org/10.1074/jbc.M803930200
  71. Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura, Ishikawa T and Shigeoka S* (Original Article)
    Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis
    Bioscience, Biotechnology, and Biochemistry, 72: 2598-2607, 2008 Oct. DOI: doi.org/10.1271/bbb.80284
  72. Maruta T, Yonemitsu M, Yabuta Y,Tamoi M, Ishikawa T and Shigeoka S* (Original Article)
    Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. 
    Journal of Biological Chemistry, 283: 28842-28851, 2008 Oct. DOI: doi.org/10.1074/jbc.M805538200
  73. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis
    Journal of Experimental Botany, 58: 2661-2671, 2007 Jun. DOI: doi.org/10.1093/jxb/erm124
  74. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K and Shigeoka S* (Original Article)
    Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. 
    Plant Journal, 48: 535-547, 2006 Nov. DOI: doi.org/10.1111/j.1365-313X.2006.02889.x
  75. Yabuta Y, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S* (Original Article)
    Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. 
    Plant & Cell Physiology, 45: 1586-1594, 2004 Nov. DOI: doi.org/10.1093/pcp/pch181

 

[Others/ その他の解説記事など]

  1. 岩上拓己,丸田隆典(トピックス)
    植物の光ストレス順応における葉緑体型アスコルビン酸ペルオキシダーゼの位置付け
    ビタミン,96:83-85,2022年3月.DOI: https://doi.org/10.20632/vso.96.3_83
  2. 丸田隆典(トピックス)
    ビタミンCの異化(2.9.9)
    ビタミン・バイオファクター総合辞典(朝倉書店,日本ビタミン学会編集). 2021年7月.pp271-274(ISBN978-4-254-10292-5)
  3. 田中泰裕,丸田隆典,石川孝博(トピックス)
    緑藻クラミドモナスのTET1 ホモログCMD1 は新規アスコルビン酸依存型ジオキシゲナーゼである95:405-412,2021年9月.
    ビタミン,94:589-592,2020年12月.DOI: doi.org/10.20632/vso.94.12_58
  4. 菊樂香奈,丸田隆典(トピックス)
    細胞質型アスコルビン酸ペルオキシダーゼは4-クマル酸3-ヒドロキシラーゼとしてリグニン合成に関与する
    ビタミン,94:450-452,2020年8月.DOI: doi.org/10.20632/vso.94.8_45
  5. 亀岡峰志,吉村和也,石川孝博,丸田隆典(トピックス)
    アスコルビン酸分解産物から糖へのオキサリル基の転移:植物におけるアスコルビン酸の新たな役割?
    ビタミン,93:337-339,2019年8月.DOI: doi.org/10.20632/vso.93.8_337
  6. 三冨 弦,寺井佑介,吉村和也,石川孝博,丸田隆典(トピックス)
    葉緑体から核への直接的なH2O2シグナル輸送 〜逆行性シグナルとアスコルビン酸ペルオキシダーゼ〜
    ビタミン,92:143-145,2018年3月.DOI: doi.org/10.20632/vso.92.3_14
  7. 寺井佑介,三冨 弦,吉村和也,石川孝博,丸田隆典(トピックス)
    デヒドロアスコルビン酸還元酵素の新たな役割 〜酸化型グルタチオンを介した細胞死誘導への寄与〜

    ビタミン,91:660-662,2017年11月.DOI: doi.org/10.20632/vso.91.11_660
  8. 寺井佑介,吉村和也,石川孝博,丸田隆典(トピックス)
    植物におけるトリニトロトルエン毒性 〜モノデヒドロアスコルビン酸還元酵素の関与〜
    ビタミン,91:366-368,2017年6月.DOI: doi.org/10.20632/vso.91.5.6_366
  9. 竹内 崇丸田隆典石川孝博(トピックス)
    植物のアスコルビン酸輸送体がついに同定された ―PHT4;4 による葉緑体へのアスコルビン酸輸送
    ビタミン,89:286-288,2015年6月.DOI: doi.org/10.20632/vso.89.5-6_286
  10. 種子田隼人丸田隆典石川孝博(トピックス)
    COP9シグナロソームは光によるアスコルビン酸生合成制御のネガティブレギュレーターとして機能する
    ビタミン,88:289-291,2014年6月.DOI: doi.org/10.20632/vso.88.5-6_289
  11. Ahmed Gaber,尾形知哉,丸田隆典,吉村和也,田茂井政宏,重岡 成(研究論文紹介)
    シロイヌナズナグルタチオンペルオキシダーゼ8の核および細胞質での酸化障害の抑制への関与
    ビタミン,87:271-273,2013年6月.DOI: doi.org/10.20632/vso.87.5-6_27
  12. 丸田隆典重岡 成(トピックス)
    活性酸素種の持つ細胞毒性作用とシグナルとしての機能 -アスコルビン酸ペルオキシダーゼによるレドックス制御-
    ビタミン,85:5-7,2011年1月.DOI: doi.org/10.20632/vso.85.1_31