Publications Takahiro ISHIKAWA/ 発表論文 石川孝博

Takahiro ISHIKAWA/ 石川孝博

[Review and Book chapters/ 総説および著書]

  1. Maruta T and Ishikawa T (Book chapter)
    Ascorbate peroxidase functions in higher plants: The control of the balance between oxidative damage and signaling. 
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp41-59, 2018 Mar.
    – – –
  2. Ishikawa T, Maruta T, Yoshimura K and Smirnoff N  (Book chapter)
    Biosynthesis and regulation of ascorbic acid in plants
    In: Gupta DE, Palma JM, Corpas FJ, Editors. Antioxidants and Antioxidant enzymes in higher plants. Springer International Publishing, pp163-179, 2018 Mar. 
    – – –
  3. Yoshimura K and Ishikawa T (Book chapter)
    Chemistry and metabolism of ascorbic acid in plants.
    In: Hossain MA, Munné- Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A, Editors. Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing, pp1-23, 2018 Mar. 

    – – –
  4. Maruta T and Ishikawa T (Book chapter)
    Ascorbate peroxidases: Crucial roles of antioxidant enzymes in plant stress responses.
    In: Hossain MA, Munné- Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A, Editors. Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing, pp111-127, 2018 Mar. 
    – – –
  5. Inui H, Ishikawa T and Tamoi M
    Wax Ester Fermentation and Its Application for Biofuel Production. 
    In: Schwartzbach SD and Shigeoka S, Editors. Euglena: Biochemistry Cell and Molecular Biology. Springer International Publishing, pp269-283, 2017 Apr. 
    – – –
  6. Ishikawa T, Tamaki S, Maruta T and Shigeoka S
    Biochemistry and Physiology of Reactive Oxygen Species in Euglena.
    In: Schwartzbach SD and Shigeoka S, Editors. Euglena: Biochemistry Cell and Molecular Biology. Springer International Publishing, pp47-64, 2017 Apr. 
    – – –
  7. Ishikawa T, Maruta T, Ogawa T, Yoshimura K and Shigeoka S
    Redox Balance in Chloroplasts as a Modulator of Environmental Stress Responses: The Role of Ascorbate Peroxidase and Nudix Hydrolase in Arabidopsis.
    In: Gupta, D.E., Palma, J.M., Corpas, F.J., Editors. Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer International Publishing, pp51-70, 2016 Sep.
    – – –
  8. Maruta T, Sawa Y, Shigeoka S and Ishikawa T
    Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme?
    Plant Cell Physiol., 57: 1377-1386, 2016 Jul.
    解説ページへ
    – – –
  9. 石川孝博,重岡成
    1-2-1-14. ビタミン.
    藻類ハンドブック(渡邉 信 監修, ISBN978-4-86469-002-7),NTS,東京,pp218-222 (2012年7月)
    – – –
  10. 石川孝博
    光合成生物におけるアスコルビン酸生合成研究の新展開.
    生化学,83巻,pp838-841,2011年9月
    – – –
  11. 石川孝博,重岡成
    II 9. ビタミンC (9.2.2 生合成経路と酸化還元系)
    ビタミン総合辞典(日本ビタミン学会 編集, ISBN978-4-254-10228-4),朝倉書店,東京,pp395-398 (2010年11月)
    – – –
  12. Ishikawa T and Shigeoka S
    Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms.
    Biosci. Biotechnol. Biochem., 72: 1143-1154, 2008 May.
    – – –
  13. 吉村和也、薮田行哲、石川孝博、重岡 成
    レドックス制御に関わるアスコルビン酸およびヌクレオシド二リン酸類縁体(Nudix).
    ビタミン,81巻,83-93,2007年3月.
    – – –
  14. Ishikawa T, Dowdle J and Smirnoff N
    Progress in manipulating ascorbic acid biosynthesis and accumulation in plants.
    Physiol. Plant., 126: 343-355, 2006 Feb.
    – – –
  15. 石川孝博,重岡成
    原生動物ユーグレナ.
    光合成微生物の機能と応用(上原赫 監修, ISBN: 4-88231-596-3), シーエムシー出版,東京,pp125-137 (2006年12月)
    – – –
  16. 石川孝博、重岡成
    酸化ストレス防御の環境適応機構.
    遺伝,58巻,pp49-55,2004年11月
    – – –
  17. 石川孝博
    アスコルビン酸ペルオキシダーゼの発現調節と活性酸素代謝.
    日本農芸化学会誌,78巻,pp.962-964,2004.
    – – –
  18. 石川孝博, 藪田行哲, 田茂井政宏, 重岡 成
    レドックスと代謝エンジニアリング.
    蛋白質・核酸・酵素,48: 2145-2153,2003.
    – – –
  19. 重岡成, 吉村和也, 石川孝博
    植物はなぜビタミンCを多く含むのか?―光・酸素毒防御系への関与―.
    ビタミン,77巻,pp363-375,2003.
    – – –
  20. 石川孝博
    高等植物における抗酸化酵素の転写後調節機構とストレス耐性獲得への利用.
    日本農芸化学会誌,77巻,pp. 494-497,2003.
    – – –
  21. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y and Yoshimura K
    Regulation and function of ascorbate peroxidase isoenzymes.
    J. Exp. Bot., 53: 1305-1319, 2002 May.
    – – –
  22. 石川孝博、吉村和也
    光合成生物の酸化ストレス防御系.
    生物工学,79巻,pp. 307-311,2001.
    – – –
  23. 吉村和也、石川孝博、重岡成
    葉緑体アスコルビン酸ペルオキシダーゼ合成の巧みなメカニズム.
    化学と生物,37巻,pp. 833-838,1999.
    – – –
  24. 重岡成、石川孝博、武田徹、田茂井政宏
    光合成生物における光・酸素毒防御系の分子機構 -光・酸素毒耐性植物の創製は可能か-
    蛋白質・核酸・酵素,43巻,pp. 634-648,1998.

 

[Original articles/ 原著論文]

  1. Iwaoka Y, Nishino K, Ishikawa T, Ito H, Sawa Y and Tai A
    Affinity resins as new tools for identifying target proteins of ascorbic acid.
    Analyst, 143: 874-882,  2018 Feb.
    – – –
  2. Azad AK, Ahmed J, Alum MA, Hasan MM, Ishikawa T and Sawa Y
    Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.
    Int. J. Biol. Macromol., 107: 2630-2642, 2018 Feb. 
    – – –
  3. Kimura M and Ishikawa T
    Suppression of DYRK orthologs expression affects wax ester fermentation in Euglena gracilis.
    J. Appl. Phycol., 30: 367-373, 2018 Feb. 
    – – –
  4. Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta T, Sawa Y and Ishikawa T
    Wax Ester Synthase/Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosynthesis in Euglena gracilis.
    Sci Rep., 7: 13504, 2017 Oct.
    解説記事
    – – –
  5. Kato S, Soshino M, Takaichi S, Ishikawa T, Nagata N, Asahina M and Shinomura T
    Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.
    BMC Plant Biol.,  17;17:125, 2017 Jul.
    – – –
  6. Nakazawa M, Hayashi R, Takenaka S, Inui H, Ishikawa T, Ueda M, Sakamoto T, Nakano Y and Miyatake K
    Physiological functions of pyruvate:NADP+ oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions.
    Biosci. Biotechnol. Biochem., 81: 1386-1393, 2017 Jul.
    – – –
  7. Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K and Ishikawa T
    Glucan Synthase-Like 2 is indispensable for paramylon synthesis in Euglena gracilis.
    FEBS Lett., 591: 1360-1370, 2017 May.
    解説ページへ
    – – –
  8. Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T and Watanabe F
    Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.
    Redox Biol., 11: 21-29, 2017 Apr.
    – – –
  9. Ozasa K, Won J, Song S, Tamaki S, Ishikawa T and Maeda M
    Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis.
    PLoS One, 12: e0172813, 2017 Feb (doi: 10.1371/journal.pone.0172813). 
    – – –
  10. Azad AK, Ahmed J, Alum MA, Hasan MM, Ishikawa T, Sawa Y and Katsuhara M.
    Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.
    PLoS One, 11: e0157735, 2016 Jun (doi: 10.1371/journal.pone.0157735). 
    – – –
  11. Yamada K, Kazama Y, Mitra S, Marukawa Y, Arashida R, Abe T, Ishikawa T, Suzuki K.
    Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.
    Biosci. Biotechnol. Biochem., 80: 1650-1656, 2016 Aug.
    – – –
  12. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T and Arakawa K
    De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions.
    BMC Genomics, 17: 182, 2016 Mar.
    解説ページへ
    – – –
  13. Kato S, Takaichi S, Ishikawa T, Asahina M, Takahashi S and Shinomura T.
    Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis.
    BMC Plant Biol., 5;16:4, 2016 Jan .
    – – –
  14. Ogawa T, Kimura A, Sakuyama H, Tamoi M, Ishikawa T and Shigeoka S.
    Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis.
    Biosci. Biotechnol. Biochem., 79: 1957-1964, 2015 Dec.
    – – –
  15. Suzuki K, Mitra S, Iwata O, Ishikawa T, Kato S and Yamada K.
    Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.
    Biosci. Biotechnol. Biochem., 79: 1730-1736, 2015 Oct.
    – – –
  16. Takeda T, Nakano Y, Takahashi M, Konno N, Sakamoto Y, Arashida R, Marukawa Y, Yoshida E, Ishikawa T and Suzuki K.
    Identification and enzymatic characterization of an endo-1,3-β-glucanase from Euglena gracilis.
    Phytochemistry, 2015 Aug;116:21-7.
    – – –
  17. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T
    Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis.
    Plant Sci., 236: 29-36, 2015 Jul.
    – – –
  18. Ogawa T, Kimura A, Sakuyama H, Tamoi M, Ishikawa T and Shigeoka S.
    Characterization and physiological role of two types of chloroplastic fructose-1,6-bisphosphatases in Euglena gracilis.
    Arch. Biochem. Biophys., 575: 61-68, 2015 Jun.
    – – –
  19. Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T and Shigeoka S
    Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.
    Biotechnol. Biofuels, 8: 80, 2015 May.
    解説ページへ
    – – –
  20. Wheeler G, Ishikawa T, Pornsaksit V and Smirnoff N.
    Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes.
    eLIFE, 13: 4, 2015 Mar (doi: 10.7554/eLife.06369).
    解説ページへ
    – – –
  21. Tanaka H, Maruta T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S
    Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1.
    Plant Sci., 231: 20-29, 2015 Feb.
    – – –
  22. Tamaki S, Maruta T, Sawa Y, Shigeoka S and Ishikawa T
    Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis.
    Biosci. Biotechnol. Biochem., 78: 593-601, 2014 Apr.
    – – –
  23. Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T and Shigeoka S
    Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis.
    Plant Sci., 219-220: 61-68, 2014 Apr.
    – – –
  24. Yoshimura K, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T and Shigeoka S
    Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis.
    Biosci. Biotechnol. Biochem., 78: 60-66, 2014 Jan.
    – – –
  25. Maruta T, Ojiri M, Noshi M, Tamoi M, Ishikawa T and Shigeoka S
    Activation of γ-aminobutyrate production by chloroplastic H2O2 is associated with the oxidative stress response.
    Biosci. Biotechnol. Biochem., 77: 422-425, 2013 Feb.
    – – –
  26. Azad AK, Hanawa R, Ishikawa T, Sawa Y and Shibata H.
    Expression profiles of aquaporin homologues and petal movement during petal development in Tulipa gesneriana.
    Physiol. Plant., 148: 397-407, 2013 Jul.
    – – –
  27. Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S
    Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. 
    Biochim. Biophys. Acts., 1820: 1901-1907, 2012 Dec.
    – – –
  28. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S
    H2O2-triggered retrograde signaling from chloroplasts to nucleus plays a specific role in the response to stress.
    J. Biol. Chem., 287: 11717-11729, 2012 Apr.
    – – –
  29. Gao Y, Badejo AA, Sawa Y and Ishikawa T
    Analysis of two L-galactono-1,4-lactone responsive genes with complementary expression during the development of Arabidopsis thaliana.
    Plant Cell Physiol., 53: 592-601, 2012 Mar.
    – – –
  30. Badejo AA, Wada K, Maruta T, Sawa Y, Shigeoka S and Ishikawa T
    Translocation and the alternative D-galacturonate pathway contribute to increasing ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway.
    J. Exp. Bot., 63: 229-239, 2012 Jan.

    – – –
  31. Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S
    Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor.
    Plant Sci., 180: 655–660, 2011 Apr.
    – – –
  32. Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Page M, Smirnoff N and Ishikawa T
    Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 75: 1783-1788, 2011 Sep.
    – – –
  33. Gao Y, Nishikawa H, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N and Ishikawa T
    Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana.
    J. Exp. Bot., 62: 3647-3657, 2011 Jun.
    – – –
  34. Ishikawa T, Tajima N, Nishikawa H, Gao Y, Rapolu M, Shibata H, Sawa Y and Shigeoka S
    Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization.
    Biochem. J., 426: 125-134, 2010 Feb.
    – – –
  35. Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T and Shigeoka S
    Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual Role in photoprotection and gene regulation under photooxidative stress.
    Plant Cell Physiol., 51: 190-200, 2010 Feb.
    – – –
  36. Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T and Shigeoka S
    Contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid.
    Biosci. Biotechnol. Biochem., 74: 1494-1497, 2010 Jul.
    – – –
  37. Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T and Shigeoka S
    The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.
    J. Biol. Chem., 283: 31133-31141, 2008 Nov.
    – – –
  38. Maruta T, Yonemitsu M, Yabuta Y,Tamoi M, Ishikawa T and Shigeoka S
    Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis.
    J. Biol. Chem., 283: 28842-28851, 2008 Oct.
    – – –
  39. Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura, Ishikawa T and Shigeoka S
    Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis.
    Biosci. Biotechnol. Biochem., 72: 2598-2607, 2008 Oct.
    – – –
  40. Dowdle J, Ishikawa T, Gatzek S, Rolinski S and Smirnoff N
    Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.
    Plant J. 52: 673-689, 2007 Sep.
    – – –
  41. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S
    Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis.
    J. Exp. Bot., 58: 2661-2671, 2007 Jun.
    – – –
  42. Ishikawa T, Masumoto I, Iwasa N, Nishikawa H, Sawa Y, Shibata H, Nakamura A, Yabuta Y and Shigeoka S
    Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis.
    Biosci. Biotech. Biochem., 70:2720-2726, 2006 Nov.
    – – –
  43. Ishikawa T, Morimoto Y, Rapolu M, Sawa Y, Shibata H, Yabuta Y, Nishizawa A and Shigeoka S
    Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells.
    Plant Cell Physiol., 46: 1264-1271, 2005 Aug.
    – – –
  44. Yabuta Y, Maruta T, Yoshimura K, Ishikawa T and Shigeoka S
    Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress.
    Plant Cell Physiol., 45: 1586-1594, 2004 Nov.
    – – –
  45. Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T and Shigeoka S
    Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate.
    Plant Cell Physiol., 45: 1271-1279, 2004 Sep.
    – – –
  46. Ishikawa T, Madhusudhan R and Shigeoka S
    Effect of iron on the expression of ascorbate peroxidase in Euglena gracilis.
    Plant Sci
    ., 165: 1363-1376, 2003 Dec.

    – – –
  47. Wada K, Tada T, Nakamura Y, Ishikawa T, Yabuta Y, Yoshimura K, Shigeoka S and Nishimura K
    Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability.
    J. Biochem., 134: 239-244, 2003 Aug.
    – – –
  48. Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S and Shibata H
    Post-transcritional regulation of ascorbate peroxidase during light adaptation of Euglena gracilis.
    Plant Sci., 165: 233-238, 2003 Jul.
    – – –
  49. Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S and Shibata H
    Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells.
    Physiol. Plant.,
    117: 550-557, 2003.

    – – –
  50. Kashiba M, Oka J, Ichikawa R, Kasahara E, Inayama T, Kageyama A, Kageyama H, Osaka T, Umegaki K, Matsumoto A, Ishikawa T, Nishikimi M, Inoue M and Inoue S
    Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats.
    Free Radic. Biol. Med., 33: 1221-1230, 2002.
    – – –
  51. Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T and Shigeoka S
    Thylakoid-membrane bound ascorbate peroxidase is a limiting factor of antioxidative systems under photooxidative stress.
    Plant J., 32: 915-925, 2002.
    – – –
  52. Yoshimura K, Yabuta Y, Ishikawa T and Shigeoka S
    Identification of a cis-element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase in higer plants.
    J. Biol. Chem., 277: 40623-40632, 2002.
    – – –
  53. Yoshimura K, Ishikawa T, Wada K, Takeda T, Kamata Y, Tada T, Nishimura K, Nakano Y and Shigeoka S
    Characterization of monoclonal antibodies against ascorbate peroxidase isoenzymes: purification and epitope-mapping using immunoaffinity column chromatography.
    Biochim. Biophys. Acta, 1526:168-174, 2001.
    – – –
  54. Kashiba M, Oka J, Ichikawa R, Kageyama A, Inayama T, Kageyama H, Ishikawa T, Nishikimi M, Inoue M and Inoue S
    Impaired reductive regeneration of ascorbic acid in the Goto-Kakizaki diabetic rat.
    Biochem. J., 351: 313-318, 2000.
    – – –
  55. Yoshimura K, Yabuta Y, Ishikawa T and Shigeoka S
    Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stress.
    Plant Physiol., 123: 223-233, 2000.
    – – –
  56. Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T and Shigeoka S
    Alternative spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves.
    Biochem J.
    , 338: 41-48, 1999.

    – – –
  57. Ishikawa T, Casini AF and Nishikimi M
    Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase.
    J. Biol. Chem., 273: 28708-28712, 1998.
    – – –
  58. Takeda T, Yoshimura K, Ishikawa T and Shigeoka S
    Purification and characterization of ascorbate peroxidase in Chlorella vulgaris.
    Biochimie, 80: 295-301, 1998.
    – – –
  59. Nishikimi M, Ohta Y and Ishikawa T
    Identification by bacterial expression of the yeast genomic sequence encoding L-galactono-g-lactone oxidase, the homologue of L-ascorbic acid-synthesizing enzyme of higher animals.
    Biochem. Mol. Biol. Int., 44: 907-913, 1998.
    – – –
  60. Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K and Shigeoka S
    Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach.
    Arch. Biochem. Biophys., 353: 55-63, 1998.
    – – –
  61. Ishikawa T, Ohta Y, Takeda T, Shigeoka S and Nishikimi M
    Increased cellular resistance to oxidative stress by expression of cyanobacterium catalase-peroxidase in animal cells.
    FEBS Lett., 426: 221-224, 1998.
    – – –
  62. Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T and Shigeoka S
    Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach.
    Plant Cell Physiol
    ., 39: 23-34, 1998.

    – – –
  63. Nishikawa T, Lee-Matsui IS, Shiraishi N, Ishikawa T, Ohta Y and Nishikimi M
    Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage.
    J. Biol. Chem., 272: 23037-23041, 1997.
    – – –
  64. Takeda T, Ishikawa T and Shigeoka S
    Metabolism of hydrogen peroxide by the scavenging system in Chlamydomonas reinhardtii.
    Physiol. Plant., 99: 49-55., 1997.
    – – –
  65. Ishikawa T, Yoshimura K, Tamoi M, Takeda T and Shigeoka S
    Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts.
    Biochem. J.
    , 328: 795-800, 1997.

    – – –
  66. Tamoi M, Ishikawa T, Takeda T and Shigeoka S
    Molecular characterizationand resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942.
    Arch. Biochem. Biophys., 334: 27-36, 1996.
    – – –
  67. Tamoi M, Ishikawa T, Takeda T and Shigeoka S
    Enzymic and molecular characterization of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC 7942: resistance of the enzyme to hydrogen peroxide.
    Biochem. J
    ., 316: 685-690, 1996.

    – – –
  68. Mutsuda M, Ishikawa T, Takeda T and Shigeoka S
    The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli.
    Biochem. J., 316: 251-257, 1996.
    – – –
  69. Ishikawa T, Takeda T and Shigeoka S
    Purification and characterization of cytosolic ascorbate peroxidase from komatsuna (Brassica rapa).
    Plant Sci., 120: 11-18, 1996.
    – – –
  70. Ishikawa T, Takeda T, Kohno H and Shigeoka S
    Molecular characterization of Euglena ascorbate peroxidase using monoclonal antibody.
    Biochim. Biophys. Acta, 1290: 69-75, 1996.
    – – –
  71. Ishikawa T, Sakai K, Yoshimura K, Takeda T and Shigeoka S
    cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions.
    FEBS Lett
    ., 384: 289-293, 1996.

    – – –
  72. Mutsuda M, Ishikawa T, Takeda T and Shigeoka S
    Subcellular localization and properties of L-galactono-g-lactone dehydrogenase in spinach leaves.
    Biosci. Biotech. Biochem., 59: 1983-1984, 1995.
    – – –
  73. Ishikawa T, Sakai K, Takeda T and Shigeoka S
    Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach.
    FEBS Lett., 367: 28-32, 1995.
    – – –
  74. Takeda T, Ishikawa T, Shigeoka S, Hirayama O and Mitsunaga T
    Purification and characterization of glutathione reductase from Chlamydomonas reinhardtii.
    J. Gen. Microbiol., 139: 2233-2238, 1993.
    – – –
  75. Ishikawa T, Takeda T, Shigeoka S, Hirayama O and Mitsunaga T
    Requirement for iron and its effect on ascorbate peroxidase in Euglena gracilis.
    Plant Sci., 93: 25-29, 1993.
    – – –
  76. Ishikawa T, Takeda T, Shigeoka S, Hirayama O and Mitsunaga T
    Hydrogen peroxide generation in organelles of Euglena gracilis.
    Phytochemistry, 1993, 33: 1297-1299.